Conservation of Brachyury (T) genes in amphioxus and vertebrates: developmental and evolutionary implications.

نویسندگان

  • P W Holland
  • B Koschorz
  • L Z Holland
  • B G Herrmann
چکیده

Homologues of the murine Brachyury (T) gene have been cloned from several vertebrates, and are implicated in mesoderm formation and in differentiation of the notochord. In contrast, the roles of the ascidian Brachyury gene may be restricted to presumptive notochord. To understand the evolution of Brachyury genes and their developmental roles, we have searched for homologues in amphioxus, representing the third chordate subphylum and the probable closest relative of the vertebrates. We report the isolation of two amphioxus cDNA clones with clear homology to Brachyury genes, and demonstrate that these derive from separate loci resultant from a recent gene duplication. This finding represents an exception to the emerging consensus of an archetypal prevertebrate genome in amphioxus. The spatial and temporal distribution of Brachyury transcripts during amphioxus development is remarkably similar to vertebrate Brachyury, in presumptive mesoderm, posterior mesoderm and the notochord. Gene expression extends throughout the anteroposterior axis of the notochord, despite the most rostral regions being a more recent specialization; it also persists into larval stages, despite differentiation into contractile tissue. We propose that roles of Brachyury in notochord differentiation are more ancient than roles in mesoderm formation, and that the latter are shared by cephalochordates and all vertebrates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Amphioxus molecular biology: insights into vertebrate evolution and developmental mechanisms1

The cephalochordate amphioxus is the best available proxy for the last common invertebrate ancestor of the vertebrates. During the last decade, the developmental genetics of amphioxus have been extensively examined for insights into the evolutionary origin and early evolution of the vertebrates. Comparisons between expression domains of homologous genes in amphioxus and vertebrates have strengt...

متن کامل

Exploring developmental, functional, and evolutionary aspects of amphioxus sensory cells

Amphioxus has neither elaborated brains nor definitive sensory organs, so that the two may have evolved in a mutually affecting manner and given rise to the forms seen in extant vertebrates. Clarifying the developmental and functional aspects of the amphioxus sensory system is thus pivotal for inferring the early evolution of vertebrates. Morphological studies have identified and classified amp...

متن کامل

Transcriptome analysis of different developmental stages of amphioxus reveals dynamic changes of distinct classes of genes during development

Vertebrates diverged from other chordates approximately 500 million years ago and have adopted several modifications of developmental processes. Amphioxus is widely used in evolutionary developmental biology research, such as on the basic patterning mechanisms involved in the chordate body plan and the origin of vertebrates. The fast development of next-generation sequencing has advanced knowle...

متن کامل

Correction: Year-Round Reproduction and Induced Spawning of Chinese Amphioxus, Branchiostoma belcheri, in Laboratory

Amphioxus is a best candidate for studying the evolutionary and developmental mechanisms of vertebrates, because of its vertebrate-like but much simpler morphology, embryonic development and genome structure. Producing live amphioxus embryos throughout the year is an ideal for comparative evolution and developmental studies. However, all amphioxus species have distinct breeding seasons in the w...

متن کامل

Comparative genomic analysis reveals the evolutionary conservation of Pax gene family.

The Pax gene family encodes a group of transcription factors whose evolution has accompanied the major morphological and functional innovations of vertebrate species. The evolutionary conservation throughout diverse lineages of metazoan and the functional importance in development rendered Pax family an ideal system to address the relationship inside Chordata phylum. In the present study, we se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 121 12  شماره 

صفحات  -

تاریخ انتشار 1995